CHROM. 18 614

Note

High-performance liquid chromatographic analysis of p -hydroxyacetophenone and p -hydroxyacetophenone- β -D-glucopyranoside, two major phenolic compounds in Norway spruce

E. HOQUE

Lehrstuhlfiir Forstbotanik, Ludwig-Maximiltins-Universitiit Miinchen, Amalienstrasse 52,SOOO Munich 40 (F.R.G.)

(First received January 29th, 1986; revised manuscript received March 6th, 1986)

 p -Hydroxyacetophenone (p -HAP) is a major phenolic compound in Norway spruce and plays a significant role in stress phenomena¹⁻³. Under stress conditions, \bar{p} -HAP accumulates in different plant organs. The ratio of \bar{p} -HAP to \bar{p} -hydroxyacetophenone- β -D-glucopyranoside (p-HAPG) was shown to increase with the increasing decline-symptoms of Norway spruce. p-HAP caused needle-fall, retarded apical growth and inhibited bud-sprouting in biological tests. Therefore, a suitable method for the determination of p -HAP and p -HAPG was urgently needed to handle a large number of samples in physiological investigations.

We have previously described the measurements of levels of p-HAP and *p-*HAPG by a combination of thin-layer chromatography (TLC), enzymic hydrolysis and gas chromatographic (GC)-flame ionization detection $(FID)^{1,2}$. p-HAP and p-HAPG were also determined by 2,4-dinitrophenyl hydrazine reagent, TLC and spectrophotometry⁴. The early methods of quantification of p -HAPG were by paper chromatography, enzymatically with β -glucosidase^{5,6} or colorimetrically with Million's reagent^{$7,8$}.

In the course of applying our previous methods to a study on Norway spruce decline, we became aware of the convenience of high performance liquid chromatographic (HPLC) methods for the determination of biologically active compounds^{1,2}. The present report describes the determinations of p -HAP and p -HAPG by reversedphase HPLC, in tissues, needle-segments and whole needles in the nanogram range.

EXPERIMENTAL

Plant materials

Epidermal strips and vascular bundles were detached from needles of Norway spruce trees, *Picea abies* (L.) Korst. (90-100 years old, harvest: June 28th, 1985, FA Bodenmais, Bavaria, F.R.G.) using a microdissection technique. The epidermal strips were cleaned from the mesophyll contaminants by a sharp razor blade. Additionally, needles of cloned Norway spruce (3.5 years old, clone no. 1027, supplied by Pflanzgarten Laufen, harvest: June 19th, 1985) were used.

Chromatographic purification and derivation of authentic samples

Commercially available p-HAP (Sigma, Munich, F.R.G.) was purified on a silica gel partition column as described by us¹ to give pure white crystals of p -HAP (HPLC purity: 95.87%). Chromatographically purified p-HAP was acetylated with pyridine-acetic acid anhydride $(1:1)$ for 4 h at room temperature and purified further by silica gel partition chromatography (column: 35 cm \times 1.6 cm I.D., particle size: 230-240 mesh; silica gel + 20% water). Acetyl-p-HAP was eluted with n-hexanechloroform $(98:2-96:4)$, in 1% step increases of chloroform, to give pure white acetyl-p-HAP crystals (HPLC purity: 94.21%).

The trifluoroacetylation of authentic p-HAP (500 mg) was carried out by trifluoroacetic acid anhydride (TFAA)-pyridine (1:1) for 4 h at room temperature and purified by partitioning between chloroform and water (pH 8.0); the purity was checked by high-performance TLC (HPTLC) $[(R_{F,\text{reflmorecert_p-HAP}} = 0.82{\text -}0.87]$ $R_{F_{p\text{-HAP}}}=0.59-0.61$; solvent system: chloroform-ethylacetate (7:3), silica gel F_{254} and HPTLC) (HPLC purity: 95.01%)].

Trifluoroacetylation of p-HAP from plant samples

The trifluoroacetylation of plant samples was performed under the following modified conditions: modification of method 1, Pierce Catalogue (Atlanta, Heidelberg, 1983)-dried sample in 200 μ l of benzene, 100 μ l of 0.01 M triethylamine + 100 ul of TFAA for 10 min at room temperature; addition of 200 μ l of phosphate buffer (pH 6.0), shaken; organic phase $(3 \times)$ collected, evaporated and dissolved in aliquots of ethyl acetate or water-methanol (65:35) prior to injection for GC or HPLC, respectively.

High-performance liquid chromutography-ultraviolet detection

The analysis was done on a Kontron HPLC system (HPLC Pump T-414, UV detector Uvikon 722 LC).

The separation of p-HAP and p-HAPG was done on a Kontron Spherisorb ODS-2 column (250 mm \times 5 mm I.D., 5 μ m particle size) connected with a Vydac 201SC precolumn (50 \times 5 mm I.D., 30–40 μ m particle size). The data were acquired and processed by Basic-programmable Shimadzu Integrator Chromatopack C-R3A. The chromatographic conditions are given in the figure legends.

Due to unavailability of radioactive p -HAP and p -HAP- β -D-glucopyranoside and radioactivity counting equipment in our laboratory, we made some compromises in experimental design. We used acetyl-p-HAP as internal standard in our analysis.

Preparation of plant samples for measurement by HPLC

The plant samples were finely homogenized in water and extracted with 80% methanol $[+100$ ppm butylated hydroxytoluene (BHT) as antioxidant]. The extracts were filtered, dried *in vacua* and diluted in the ratio 1:8000-1:24000.

The internal standard acetyl-p-HAP (equivalent to 2.19 μ g) was added in the intermediate dilution of the sample $(1:1000)$ in order to monitor the losses during chromatographic analysis. No influence of BHT could be detected in the analysis under the conditions described below.

Gas chromatography-electron-capture detection

The determination of p -HAP and p -HAP- β -D-glucopyranoside (after enzymic hydrolysis) following trifluoroacetylation by GC with electron-capture detection (ECD) (63Ni , 10 mCi) was performed under the following conditions: column, 10% SE-30 packed on Gas Chrom Q, 100-120 mesh (1 m \times 2 mm I.D.); column temperature, 130°C; injector temperature, 250°C; flow-rate of nitrogen, 25 ml/min. The measurements were done using a Packard-Becker Gas chromatograph Model 427. Under these conditions, the detection limit of trifluoroacetyl-p-HAP was *ea. 5* ng.

Gas chromatography-flame ionization detection

The preparation of sample and the GC-FID measurement of p-HAP and *p-*HAPG were performed according to Hoque².

RESULTS AND DISCUSSION

p-HAP, p-HAPG, trifluoroacetyl-p-HAP and acetyl-p-HAP can be detected at 265 nm (near their maximum absorption wavelength). In our work on the levels of p-HAP and p-HAPG in Norway spruce needles, we observed no significant interference at this wavelength from the contaminants in the 80% aq. methanolic extracts of Norway spruce needles. Our results are summarized in Tables I, II, III and IV.

Fig. 1 shows the test of linearity of the measurements of p-HAP, p-HAP- β -

Fig. 1. Test of linearity of the measurement of p -HAP (\bullet), p -HAP- β -D-glucopyranoside (\circ), trifluoroacetyl-p-HAP (\blacktriangle) and acetyl-p-HAP (\triangle) by isocratic HPLC (0.6 ml/min flow-rate; $\lambda = 265$ nm; mobile phase = 65% water + 35% methanol). The linearity of the measurements of p-HAP, p-HAP- β -D-glucopyranoside, TFA-p-HAP and acetyl-p-HAP can be described by the regression lines, $y = 0.51 +$ 0.000135x ($r^2 = 1.00$), $y = 2.39 + 0.000268x$ ($r^2 = 1.00$), $y = 2.46 + 0.000275x$ ($r^2 = 0.99$) and $y =$ 4.14 + 0.000715x ($r^2 = 0.98$), respectively.

Fig. 2. Separation of authentic samples of p-HAPG (1), p-HAP (2) and acetyl-p-HAP (3) by isocratic reversed-phase HPLC. An aliquot equivalent to 77.77 ng of each sample was injected.

D-glucopyranoside and acetyl-p-HAP by HPLC. Fig. 2 shows the separation of authentic p -HAP, p -HAP- β -D-glucopyranoside and acetyl- p -HAP, and Fig. 3 shows the separation of these substances from plant material. Phenolic acids could not be separated from each other by the water-methanol (6535) mobile phase. The elution pattern of the phenolic compounds studied here were in the following order: phenolic

Fig. 3. Analysis of p-HAPG (1) and p-HAP (2) in plant samples by isocratic reversed-phase HPLC. Peak 3 corresponds to the internal standard acetyl-p-HAP. An aliquot of the diluted extract equivalent to 4.17 (affected tree)-250 μ g (healthy tree) fresh weight was injected for measurement. The above chromatogram was obtained from needles of an affected tree (FA Bodenmais, harvest: 28.6.85, ca. 100-year-old tree). The losses of acetyl-p-HAP were between 15 and 20% during chromatographic analysis.

TABLE I

RETENTION TIMES OF PHENOLIC COMPOUNDS

TABLE II

PRECISION AND ACCURACY OF THE MEASUREMENT OF p-HAP AND p-HAPG BY HPLC IN EPIDERMAL STRIPS AND NEEDLES OF NORWAY SPRUCE

 p -HAP: μ g/g fres weight, p-HAPG: μ g/g fresh weight calculated as p-HAP equivalents

* Site Bodenmais (1100 m above sea-level, harvest: June 28th, 1985).

** Site Sauerlach (670 m above sea-level, harvest: June 12th, 1984).

*** Precision = coefficient of variation (C.V.%) = (standard deviation $\times 100$)/ \bar{x} .

[§] Accuracy $(S_{\overline{s}}\%) = (C.V.\% \times I)/\sqrt{n-1}$, where $t = t$ value of 2-tail Student's *t*-test at $P = 0.05$ and degrees of freedom = $n - 1$.

were measured by the TLC-GC method, obviously due to high losses of p -HAPG acids eluted earlier than p -HAP- β -D-glucopyranoside, p -HAP earlier than trifluoroacetyl-p-HAP and trifluoroacetyl-p-HAP earlier than acetyl-p-HAP (Table I).

The precision and accuracy of the measurement by HPLC as shown in Table II demonstrate the high reliability of the HPLC method in the anlysis of p -HAP and p-HAPG in needle extracts. Table III shows the comparison of the measurement of p-HAP and p-HAPG by HPLC- and TLC-GC methods. Lower values of p-HAPG were measured by the TLC-GC method, obviously due to high losses of p -HAPG in different steps of sample preparation for GC measurement (extraction, fractionation, TLC, enzymic hydrolysis, extraction)².

GC-ECD of trifluoroacetylated extracts before and after alkaline hydrolysis following purification by TLC confirmed the presence of p -HAP and p -HAP- β -D-

TABLE III

COMPARISON BETWEEN HPLC AND GC METHODS IN THE MEASUREMENT OF p-HAP AND p-HAPG IN NEEDLES

3-Year-old needles, IOO-year old healthy trees, FA Sauerlach, harvest: June 12th, 1984, *p-HAP: pg/g* **fresh** weight, p-HAPG: ug/g fresh weight p-HAP equivalents.

Sample no.	GC-FID		HPLC-UV	
	p -HAP	p-HAPG	p-HAP	<i>p-HAPG</i>
1	56	405	63	405
2	192	1750	157	2763
3	137	568	131	912
4	29	1194	18	2546
5	251	409	352	566
6	41	1466	20	1840
7	134	164	105	229

glucopyranoside (trifluoroacetyl-p-HAP, GC-ECD, $t_R = 7.2$ min) in different tissues of needles as shown by HPLC.

The response of the electron-capture detector was found to be linear in the measuring range 5-62 ng and can be described by the regression line, $y = -22.07$ $+ 0.16x (r^2 = 0.82)$, where $v =$ injected amount of trifluoroacetyl-p-HAP (ng) and $x =$ detected area of the peak (mm²). However, the GC-ECD technique was found to be unsuitable for a large number of samples.

Previously, the identification of p-HAP was reported by us in Norway spruce needles³. p-HAPG was also inequivocally identified⁹ in Norway spruce needles using *W, IR, mass spectroscopy* ¹H NMR and ¹³C NMR spectroscopy. Table IV shows the levels of p -HAP and p -HAP- β - p -glucopyranoside in different tissues and needles as measured by HPLC.

TABLE N

CONTENTS OF p-HAP AND p-HAPG IN EPIDERMAL STRIPS (µg/g FRESH WEIGHT), VAS-**CULAR BUNDLES (Irg/g DRY WEIGHT) AND NEEDLES OF CURRENT-YEAR SHOOTS kg/g FRESH WEIGHT) BY HPLC**

* Plants with planting shock.

CONCLUSIONS

The results show that the determination of p -HAP and p -HAP- β -D-glucopyranoside can be conveniently carried out by isocratic HPLC. This method is superior to the methods described previously¹⁻⁴. The following merits of the isocratic method are important: rapid measurement (8-10 samples/day), no enzymic hydrolysation of p -HAP- β -D-glucopyranoside necessary prior to HPLC measurements, sensitive measurement in the nanogramme range, low cost/measurement, measurement of p-HAP and p-HAPG in the same run.

A further reduction of analysis duration could be obtained with 2,5-dihydroxyacetophenone (retention time 27.2 min) instead of acetyl-p-hydroxyacetophenone (retention time 55.0 min, see Table I) as internal standard. The response of the detector was found to be linear for 2,5_dihydroxyacetophenone in the range 20-840 ng.

REFERENCES

- 1 E. Hoque, *Eur. J. Fur. Patizol..* 14 (1984) 377.
- 2 E. Hoque, *Eur. J. For. Pathol.,* 15 (1985) 129.
- 3 E. Hoque, *Phytochemistry, 23 (1984) 923.*
- *4* H. Esterbauer, D. Grill and G. Beck, *Anal. Chem., 46 (1974) 789.*
- *5* P. Dittrich, *Thesis,* University of Munich, 1970.
- 6 E. Borquelot, *C.R. Acad. Sk., 17 (1920) 535.*
- *7* H. Thieme, *Pharmazie, I9 (1964) 535.*
- *8* H. Thieme, *Pharmazie, 19 (1964) 471.*
- *9* E. Hoque and 0. Seligmann, unpublished results.